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An experiment with a simple method for controlling
an inverted pendulum

by

William T. Powers

A simulated inverted pendulum consisting of a bob on a shaft hinged
to a movable cart is controlled by a hierarchy of 5 simple control sys-
tems. The simulation of the physical system treats the cart and bob as
free masses connected by a spring acting in the direction of the shaft.
No trigonometric functions are required. The user of the program
can set a reference position with the mouse, after which the control
systems move the cart carrying its balanced pendulum to place the
bob at any selected position in the x direction. This is an experimen-
tal design, with no serious attempt to optimize performance. Nev-
ertheless, performance is better than a human being could produce.
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1. Introduction
This paper addresses two subjects relating to simulation and con-
trol, the first being a simplified method for simulating a mechanical
system and the second being a method for achieving control of an
inverted pendulum. The methods may be suggestive of broader ap-
plications, and are presented here despite their incomplete form so
that others may help extend the principles.

The test bed is a computer-simulated pendulum mounted upside
down on a simulated movable cart. The shaft and bob are hinged to
a cart that can roll in the x direction on rails. The plane of motion
of the pendulum is vertical and includes the direction of motion of
the cart. The first phase of this project involves simulating the pen-
dulum itself in a way that appeals only to fundamental physical re-
lationships rather than solutions of analytical equations. The second
phase involves developing a control system consisting of subsystems
that control successively higher time-integrals of physical variables
until a level is reached that can control the position of the bob in the
x direction. Each control subsystem is very simple.
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2. Simulating the pendulum
The mechanical assembly being simulated consists of a rolling cart
and a bob, each treated as a point-mass, and a shaft connecting the
bob to a hinge on the cart. The bob weighs 1 Kg, the cart weighs
0.1 Kg, and the shaft is considered weightless. See the upper part of
Fig. 1.

The cart is confined to motion along the x axis; the bob can move
in two dimensions, x and y. The two masses are connected by the
shaft, which is not considered rigid as in the usual physical approx-
imations, but is treated as a spring with a resting length L0. The
spring can extend or shorten, but does not bend. When the bob and
the cart are in specific positions, the distance between their centers is
the length L of the shaft, and in general this length implies a force of
a magnitude

F = ke � (L� L0) (1)

where
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F = force in newtons,
ke = spring constant, newtons/meter
L = actual length of shaft, stretched or compressed,
L0 = resting length of shaft

The force generated by the spring acts along the direction of the
shaft between the bob and the cart, pulling them together or push-
ing them apart. The result is to accelerate both objects: the cart to
the left or right along its rail, and the bob in some direction in x-y
space. Computing the acceleration is simplified by computing x and
y acceleration separately.

For the bob, the x force Bob.fx is simply the ratio of the x dis-
placement of the bob relative to the cart divided by the shaft length
L, times the force in the direction of the shaft. Since the force along
the hypotenuse of the triangle is known, we can compute the x and y
forces using similar triangles instead of trigonometric functions. The
acceleration is the force divided by the mass, Bob.Mass:

Bob.Ax = F*(Bob.x - Cart.x)/(Bob.Mass*L)
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The y acceleration is

Bob.Ay = F*(Bob.y - Cart.y)/(Bob.Mass*L)

For the cart, the expressions are the same except that ”cart” is substi-
tuted for ”bob” in the variable names (Note 1).
We have the x and y accelerations of the bob and the x acceleration of
the cart, so we can proceed to integrate once to get velocity and again
to get position in both the x and y directions for both masses. The
integration is done over a very short time-duration (here 0.0001 sec-
ond) to get a new set of x and y positions for the bob and cart. Then,
with the bob and cart in slightly different new positions, we can com-
pute the new length of the shaft, new forces and accelerations, and
new bob and cart positions to use during the next ten-thousandth of
a second. This is the basic process of simulation in which we com-
pute the new state of a system after a very short time interval, and
then compute the new forces acting on the system during the next
time interval. This process is repeated millions of times during a run
of a simulation.
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This permits us to simulate the behavior of the system without
going through an abstract mathematical analysis. This method is
very close to working with the physical system itself, and has the
great advantage that nonlinear relationships are just as easy to work
with as linear ones.

The computer program actually used calculates an added force
dependent on the velocity of extension or contraction of the shaft;
the amount of this ”viscous damping” force is selected to make any
high-frequency oscillations of the masses at the ends of the spring
damp out rapidly. The spring constant used for the shaft is about 10
million newtons per meter, so the shaft is very stiff: a weight of 1
kilogram hanging from the shaft would stretch it by about one mi-
cron or 25 millionths of an inch. The shaft is hardly distinguishable
from the classic ”rigid rod” used in mathematical analysis of similar
mechanical systems. But its non-rigidity makes all the difference in
the analysis.

There are several practical advantages of this method of simulat-
ing a mechanical system. It is not necessary to find mathematical
forms for all the relationships. No differential equations have to be
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solved analytically. No trigonometric functions, which are slow to
compute, are used. One point that does need investigation is how
close this way of treating the physical system comes to an exact ana-
lytical representation of its behavior.
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3. The Control Systems
Two sets of control systems are used. The first set positions the cart,
and the second set positions the pendulum bob by using the cart-
positioning systems.

A force applied to the cart in the x direction will cause it to accel-
erate, its velocity increasing at a constant rate for a constant applied
force. In Fig. 1 , the smallest closed loop in the lower right corner is
the cart velocity control system. For all control systems it is assumed
that a suitable sensor for the controlled variable, here linear velocity,
exists.

The sensed velocity in the x direction, Cart.vx, is compared with a
reference velocity signal coming from above, and the error signal, the
difference, is amplified and converted to a force applied to the cart.
Everything in this loop responds proportionally except for the time-
integration in the box, which represent the conversion of applied
force to acceleration and the conversion of acceleration to velocity,
which are basic physical relationships. This loop, with one integra-
tion in it, is inherently stable. If the output parameter (here, a factor
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of 200) is large enough, the sensed velocity will closely track the ref-
erence velocity, shown entering the comparator (C) from above. The
feedback involved in this control process will see to it that changes
in the sensed velocity are nearly simultaneous with variations in
the reference signal, so the control system as a whole behaves very
nearly like a proportional link. It is this property of negative feed-
back control that makes the hierarchical control process so easy to
stabilize.

The controlled velocity is integrated again to calculate the posi-
tion of the cart – in effect, velocity is multiplied by elapsed time to
get distance traveled (over a period of 0.0001 second). In the next
hiigher control system, the sensed distance is compared with a refer-
ence distance signal by the second level comparator (C in a box), the
error signal being amplified to become the reference velocity for the
first-level system. Because the first-level integration has been made
almost into a proportional response, the second loop can be made
very sensitive without causing instability. In this case the error sig-
nal is multiplied by 200. The result is that the cart position follows
the reference position signal very closely and quickly.



Section 3: The Control Systems 12

The cart, with the bob standing approximately vertically above
it, must move in the direction of lean of the bob to create a lean in
the other direction and slow the bob to a stop. To achieve this, the
present strategy was first to get control of bob acceleration, use that
to get control of bob velocity, and finally to use that to get control of
bob position.

The acceleration of the bob is affected by the distance of the cart
to the left or right underneath the bob. The first bob control system
senses the cart position relative to the bob, and keeps it at whatever
relative position is set by the reference signal. As the bob accelerates
left or right, the cart also accelerates, keeping the angle of lean and
the acceleration constant.

The bob acceleration is integrated (by the physics of nature) to
generate the bob velocity. In the second bob control system, bob ve-
locity is sensed and compared with a reference velocity, and the dif-
ference or error is amplified to produce the reference signal for the
acceleration control system.

To establish a velocity to the right, the cart must move at first to
the left, creating a lean of the bob to the right. Then, as the velocity
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increases toward the reference velocity, the lean decreases (the cart
moves right and catches up to the bob), and the bob then continues
moving at the specified velocity while remaining upright above the
cart. All this happens completely automatically; the cart is made to
move left when the acceleration is too low, and right when it is too
high, and that is all that is necessary to do.

Finally, bob velocity is integrated as in nature to produce bob po-
sition, and bob position is compared with a reference position to pro-
duce a position error signal. This error signal is amplified to generate
the velocity reference signal, closing the final loop.
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4. Limits of performance
The forces that balance the bob are actually produced by gravity. The
control systems, by moving the supporting cart left and right un-
derneath the bob, can direct these gravitational forces to create the
necessary balancing forces. However, this can work only if the bob
remains within some fairly small angle of the vertical over the cart
(about plus and minus 30 degrees). Within this range, a leftward
movement of the cart produces a rightward acceleration of the bob.
As the bob moves out of this range, the direct effect of cart move-
ments on the bob (through the shaft) begins to predominate. This can
be seen by imagining the bob to have toppled over by 90 degrees so
the shaft is parallel to the x axis. Now when the cart moves leftward,
the bob can only move left (instead of right). Somewhere between
the vertical and this 90 degree orientation, there is a transition from
one sign to the opposite sign of the effect of moving the cart. Since
the direct effect is opposite to the gravitational effect, there comes a
point where the negative feedback in our control systems turns into
positive – and very much larger – feedback effects. At that point
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the program goes into runaway and halts when the variables head
towward infinite values.

In a truly complete model, one that works as much like a human
system as possible, runaway would not happen. Instead, a higher-
level system would turn off the balancing control systems before they
get into a runaway state, and substitute another system, perhaps one
that swings the bob in large loops back and forth until it comes to
a stop for a moment somewhere within the effective control range.
Then balancing could be resumed. Real human beings behave just
like this. If a disturbance moves the bob out of the critical range, the
human being will start into a runaway process, but before it can go
very far, a completely different mode of behavior will take the place
of balancing.

Since this higher-level control is not part of this model, runaway
is avoided here simply by limiting the output of the position control
system, which limits the speed reference signal.
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5. Performance of the simulation
When the program starts, the bob is initialized to a position 0.1 ra-
dian off the vertical, with the position reference signal set to zero and
the cart at the zero of the x-axis. The computer mouse controls the
position reference signal.

The cart immediately moves under the bob and the bob quickly
comes into balance. It remains in balance indefinitely with no visible
movement. See screenshot in Fig. 2.

Now the user can use the mouse to move the reference position
to either side. On the screen, the cart immediately moves opposite
to the mouse movement, making the shaft and bob lean the way
the mouse went. The cart and bob accelerate to a constant veloc-
ity and coast for a while with the bob vertical again. Then, as the bob
approaches the new reference position, the cart speeds up and gets
ahead of the bob. The resulting backward lean decelerates the bob.
As the bob approaches the reference position, the backward lean de-
creases, becoming zero just as the bob becomes stationary at (or very
close to) the new reference position.
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This behavior looks complex and programmed, but it is in fact
neither. The complex motions are a natural result of the behavior
of the organization shown in the lower half of Fig. 1. There are no
tests for different logical conditions, and there are no logical rules in
effect (as in ”fuzzy logic” controllers). This is a set of 5 very simple
continuous analog controllers.
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6. Conclusions
There were two primary objectives in constructing this stimulation.
One was to test the idea of simulating mechanical systems in terms
of fundamental physical laws, not employing ”rigid rods.” The other
objective was to test the idea that complex control systems could be
analyzed into hierarchical levels, with the lowest levels controlling
the highest derivatives of the variables to be controlled. The results
are encouraging in both cases.

In this preliminary effort, no attempt was made to find optimum
parameter settings to get the greatest stability and speed possible.
In fact this could be claimed as another positive result, for the idea
was to see if there could be an approach to simulating control pro-
cesses that bypasses all the complexities so often found in textbooks
on this subject. The author, however, would be embarrassed to make
that claim, since the truth is that complex methods of control system
analysis are mostly beyond his abilities.

It may be, however, all such disclaimers aside, that the methods
outlined here could be developed into a much more systematic and
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useful approach to both simulation and control. Simulating physi-
cal systems in the usual way gets extremely complex and requires
advanced mathematical abilities; the same applies to simulating and
analyzing control systems. Any method that promises to simplify
and streamline such analyses, while of little interest to mathemati-
cal geniuses, might well be worth developing for the sake of the rest
of us. Anyone interested is warmly encouraged to help carry this
exploration further.

William T. Powers
Durango, CO
May 24, 1998
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The notation here is that of computer programming, not normal
mathematics. The explicit multiplication sign (*) allows variables to
be given multiple-letter names rather than being represented by sin-
gle letters. Variables are grouped into ”records” which can contain
lists of symbols. For example, the record named ”Bob” has sub-
symbols x,vx,ax,fx,y,vy,ay, and fy. The letter x indicates position, v
is velocity, a is acceleration, and f is force. Thus Bob.ay means the
y direction of acceleration of the Bob, Cart.vx means the x direction
of velocity of the Cart, and Bob.y means the y position of the Bob.
With this key, the equations in the upper part of Fig. 1 become self-
explanatory.

Note 1 Back
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